FEX-Emu =2 IR 2 AT

RF %, xuzevi@stu.ecnu.edu.cn

mailto:xuzeyi@stu.ecnu.edu.cn

TL;DR

« W ER5
e FEXRE5RY—

« RISC-V BJ B #i]

IEE
1A

o
E S

0=

£

RE =& IR0

N

Table Of Contents

* Basic Info

* Bilim:

« B IR 5 SSA =X TRILAE
e [5im: SyscalllAIE/{X 1D 4 Rk

o M1zl

* RISC-V 75 4#

IO

Basic Info

« FEX-Emu 22—~ M x86(_64) El| ARM FIRI-S Z iH il EH 3]

FEX Architecture Overview

Guest Environment

Guest Space i :
(x86-64 Binary) ! User Application Guest Libraries ;

. SN
Frontend IR & Optimizer JIT Compiler
FEXLoader - Code Cache
(x86 Decoder) (Pass Manager) (AArch64 ASM) (JIT Blocks)

Cache Miss

Function Cail
(Thunk)
Signal
iRt Syssall Syscall Handler
- -’
It =\
\ 4 \ 4 v
Host System ; ——
(AArch64 Hardware / OS) Host Linux Kernel Host Native Libraries

\

Why use FEX

« BEGTR 48 B BT R 22 44

* HiIii -> IR -> Codegen
- [L¥EE E DBT B/EMIRIIR 1T

« A 2RI EER I (next slide)

— /N8 EE B Benchmark

o ML NI ZR: FEX-Emu/Native
« N4 ampere@solelab
« Nz £E: openssl/7z

Bench results:

600000

500000

400000

300000

200000

100000

o

B Compress M Decompress HTotal

7z -b
AArch64 Native FEX-Emu

Around 75% of native

3000000

2500000

2000000

1500000

1000000

500000

3

Q
©
é\

openssl speed (16384 bytes)

a4
Q
0}\

\el

Q)
(g)’\
2

AN

N ¥ 1

2 &
& &

B Native B FEX-Emu

| I | .
O O
/C)0 %/00
,.—f/’.)
\&‘\‘b
((\Q)
o)

Hildm: =F T2 132 HR

e FEX ¥£ FExCore: :Frontend: :Decoder FISLENFF ERHTFRE I [R 08 BY x86 FF 103
(FEXCore/SouPce/IntePFace/Core/FPontend.cpp)

uint8_t Decoder::ReadByte() {
LOGMAN_THROW_A_FMT(InstructionSize < MAX_INST_SIZE, "Max instruction size exceeded!"); ﬂﬁu‘ﬁﬁ

std::optional<uint8_t> Byte = PeekByte(8); _
if (!Byte) { PeekByte W%K*ﬁﬁ'ﬂﬁ%%ﬂ?ﬂ?j'

HitNonExecutableRange = true;
// Pretend we read 8, the main decode loop will see HitNonExecutableRange and rollback the instruction.

return 0;

}
Instruction[InstructionSize] = *Byte; ﬁ]\:}‘ﬁ%éﬁ@ﬂ:;@@

InstructionSize++;
return *Byte;

Hijif: OpCode Mk &

FEX JT'_E >\< 7 _/l\iji E/‘] %%75\%@5 OpDispatch_BaseOpTable
(FEXCore/Source/Interface/Core/OpcodeDispatcher/BaseTables.h)

Decoder ZER|ZF T8, ESEABEXRETIX N AIEKEIEET

4 namespace FEXCore::IR {
5 constexpr DispatchTableEntry OpDispatch_BaseOpTable[] = {

{6x00, &0pDispatchBuilder: :Bind<&0pDispatchBuilder: :ALUOp, FEXCore::IR:: ::0P_ADD, FEXCore::IR::IROps::0P_ATOMICFETCHADD, 6>},
{0x08, &0pDispatchBuilder: :Bind<&0pDispatchBuilder: :ALUOp, FEXCore::IR:: ::0P_OR, FEXCore::IR::IROps::0P_ATOMICFETCHOR, 8>},

{6x180, &0pDispatchBuilder: :Bind<&0pDispatchBuilder: :ADCOp, 0>},

{8x18, &0pDispatchBuilder: :Bind<&0pDispatchBuilder::SBBOp, 0>},

{6x20, &0pDispatchBuilder::Bind<0pDispatchBuilder::ALUOp, FEXCore::IR:: : :OP_ANDWITHFLAGS, FEXCore::IR::IROps::0P_ATOMICFETCHAND, 8>},

{0x28, &0pDispatchBuilder: :Bind<&0pDispatchBuilder::ALUOp, FEXCore::IR:: ::0P_SUB, FEXCore::IR::IROps::0P_ATOMICFETCHSUB, 6>},

B IR ¥ 3&
o FH % &

o /FEXCore/Source/Interface/IR/IREmitter.[h|cpp]
o /FEXCore/Source/Interface/Core/OpcodeDispatcher.cpp

« AR
o M#ERIEIERL
o MNEL HRVRIERL
o HE Rk IR
o T ERGN

1 iF: Overview

R Spec: IR.json
R Dumper: IRDumper.cpp
R Debug: IRDumperPass.cpp

R Emitter: IREmitter.cpp
o & IR MM EBEK %K

IR to IR Optimizations:
o Il PassManager & Passes 31432 T B34

"GPR:$EAX, GPR:$EDX =

}

1 i

 FEX Y IR E X TE /FEXCore/Source/Interface/IR/IR.json HH

IR

« E¥IER CMake &£1{&F,
« TR.md: FEX-Emu B9 IR 3C#Y
« IRDefines.inc: IR{FEAMRAEEWAEENX

e IRDefines Dispatch.inc:JIT BimPr{E AR FBA &5 Alias

XGetBV GPR:$Function": {

11Z . json TE X 4

"Desc": ["Calls in to the XCR handler function to return emulated XCR"],)

"DestSize": "OpSize::132Bit",

"HasSideEffects":

E R =304

struct __attribute_ ((

static constexpr

static constexpr size_t
static constexpr size_t
static constexpr size_t
b;
static_assert(
static_assert(

))

AL

ALU BARZBESE, N/E/ERGRALESES

Atomic [RFRME, DB L8/ F# AR P RIFED HLH

Backend REBE—1M45KR OpCode: Last, AEFRIIRPHRE—1NTE
Branch SSA E KRR Bk4:, Syscall ¥ & /1EF, Library forwarding, CPUID, Hyx...
Conv (B2 m/RE)B i

Crypto INZE FOMG % BN 4L (AES/SHA-256/SHA-1)

F64 double #HXHIEH (FEX P X ER = A/ W/ IEHEER)

F80 =L x87 FPU # long double

Memory ERFWNRXE (NE/FEiE/mib T E S

Misc SSA HITT#i#E (IRHeader/#%# Block), AKX, MEHLEF
Moves Copy && Swap

StaticRA il SSA EINFFir, ERSEYMETEFR

Vector AgrEREERES

VectorScalar MmE-REReFRETE

i ig: IR

e FEX-Emu B IR{EAH T SSA 2=, 3

A UL TRV E :

« Z5— SSA Node #IANZ Invalid B (B] %0 7k 2T A null)
» FEIAYEE — 1 SSA Node —5E =& IRHeader Node (B[l %1 7k 2t N IRHeader)

Entry point address The first Cod/eBlockIROp

/

(%%1) IRHeader @x41;9a@, %%&, 5

(%%2) CodeBlock %%7, %%168, %%3,

/

AN

Starting,op Endin/g op Pointer to ne\xt CodeBlock

(%%3) CodeBlock %%169, %%173, %X%4

(%%169) BeginBlock %3

(%%170) i64 = Constant 0x41a9el

(%%171) StoreContext %170 i64, Ox8, 0x0

(%%172) ExitFunction

(%%173) EndBlock %3

thim: IR (In-memory)

° Wﬁﬁ@ﬂ E IntrusiveIRList.h El:%{iﬂégl_']?l’!iﬂ, H—E&“E_éﬁpﬁ@—ﬁﬂg:
oData X: ¥ IROp (IROp Header + IROp *)
o List X: £ OrderedNode (SEFRBIRAIEER T &, U IR h)

26 /**

19
18
17
16
15
14
13
12
11
10

9

8

i

*

% % * ok X * F * * 0k

%
T—

@brief This is a node in our IR representation
Is a doubly linked list node that lives in a representation of a linearly allocated node list
The links in the nodes can live in a list independent of the data IR data

ex.
Region1 : ... <-> <OrderedNode> <-> <OrderedNode> <-> ...
| *<Value> |
v v
Region2 : <IROp>..<IROp>..<IROp>..<IROp>

In this example the OrderedNodes are allocated in one linear memory region (Not necessarily contiguous with one another linking)
The second region is contiguous but they don't have any relationship with one another directly

(%%3) CodeBlock %%169, %%173, %%4

Region2

3 struct __attribute__((packed)) IROp_CodeBlock {

4 IROp_Header Header; -

5 // SSA arguments Region1: #&5

6 OrderedNodeWrapper Begin; using OpNodeWrapper = NodeWrapperBase<IROp_Header>;

I OrderedNodeWrapper Last; using OrderedNodeWrapper = NodeWrapperBase<OrderedNode>;
8

// Non-SSA arguments

9 uint32_t ID;

10 bool EntryPoint;

11 uint32_t GuestEntryOffset;

12 static constexpr IROps OPCODE = OP_CODEBLOCK;
13 // Get index of argument by name

14 static constexpr size_t Begin_Index = 0;

15 static constexpr size_t Last_Index = 1;
16 };

Him: BT SSA R IR Tk

FEX-Emu BY PassManager B B T X £E Pass:
° IR gﬁiJ__E /FEXCore/Source/Interface/IR/Passes/IRValidation.cpp

° %ﬁ%ﬁﬁj\ﬁd s

T3R8 5 Allocator

/FEXCore/Source/Interface/IR/Passes/RegisterAllocationPass.cpp

 Dead Flag/DCE ;HB&:

/FEXCore/Source/Interface/IR/Passes/RedundantFlagCalculationElimination.cpp
« X87 iZ HiLE R StackOptimizationPass

12 struct HostFeatures §

1 /**
10 * @brief Backend features that change how codegen is generated from
9 *

* Specifically things that affect the IR->Codegen process
* Not the x86->IR process

*/

uint32_t DCachelineSize {};

uint32_t ICachelineSize {};

L LI AN 1IN
uf: CPU BE JIERN
lﬂﬁ- F§t3 /N
bool SupportsCacheMaintenanceOps {};
bool SupportsRAND {};
18 bool SupportsCSSC {};
15 bool SupportsPreserveAllABI {};

8
7
6
5
4
3
.’ 2 bool SupportsAES {};
. 1 bool § tsCRC {};
* *E i K 14: . 28] bgsl szgggitzumo 4
1 bool SupportsAtomics {};
2 bool SupportsRCPC {};
* 1:% I:I o ool szggzitzmlmm £}
4
o /FEXCore/include/FEXCore/Core/HostFeatures.h o e 1
—— 7 bool SupportsSVE256 {};
° §1$: MM 8 bool SupportsSHA {};
=RV NSRS [I,
o /Source/Common/HostFeatures.h 11 bool SupporteFCHR {J;
12 bool SupportsFlagM {};
13 bool SupportsFlagh? {};
o /Source/Common/HostFeatures.cpp 14 bool SupportsRPRES {3;
SR - 16 bool SupportsAES256 {};
* =< I)rlbjj_ :_r—t 17 boal sﬂﬁﬁﬁ&isvgeiwem 3
18 bool SupportsCPUIndexInTPIDRRO {};
=3 25 = = .
o IR GIE fFax (W GetSysReg BISLHN) By o Soporiarins

AVAN Z 21 bool SupportsWFXT {};
@) WH%/E/)?:H 22 bool Supports3DNow {};

23 bool SupportsSSE4a {};

O AA I—inux 1:3141\:%1:% D -I';‘IzHR1§I§\ :é // Float exception behaviour

26 bool SupportsAFP {3};
27 bool SupportsFloatExceptions {};

29 [/ Flag if this is InstCountCI
38 bool IsInstCountCI {};

32 // MIDR information

33 // Also used for determining number of CPU cores for CPUID
v 34 fextl::vector<uint32_t> CPUMIDRs;

35 };

36 } // namespace FEXCore

f5im: T

« FEXCore/Source/lnterface/Core/JIT/JITClass.h EJES(T FEXCore::CPU::CPUBackend,
FEXCore::CPU::Arm64JITCore *[I FEXCore::CPU::Arm64Emitter

« FEXCore/Source/Interface/Core/JITAIT.cpp 5P F|] FH S8 B o) & R
IRDefines_Dispatch.inc Z4£3° B KB Switch Case 1&H]

o 1A Arm64Emitter B — & 15

On Testing

FEX-Emu's Cl uses these tests to avoid regression and prove
correctness:

* A lot of handwritten assembly unit tests
* Unable to run under RISC-V, but may be portable

e 64-bit posixte &V HEF RS 7HBLREE S urceforge.net/
* 64-bit gvisor tests from https://github.com/google/gvisor,
* gcc-target-tests-32 and gcc-target-tests-64

* Some tests are really old (e.g. 17 years ago)

http://posixtest.sourceforge.net/
https://github.com/google/gvisor

Issues:

What features will not be in FEX?

Secure mode

Hardware reference platform

16-bit x86

100% accurate
o What to compare to even?

FOSDEM 2022: Emulator Devroom - FEX-Emu: Fast(-er)
x86 emulation for AArch64

Which causes

* Some testcases are failing in unittests
* timer-sigev-thread crashes FEX with SIGSEGV
* synchronous-signal-block trigger various quirks in FEX's signal handling
* Alot of sighal related tests can't run properly due to race/hang/timeout

B BT # workaround & F &) k8 XL M3 s

On RISC-V Porting

« ONGOING CPU ge A ZEM

o syscall: sys riscv_hwprobe

* DONE Syscall Handling

* TODO Library Thunking

* ONGOING JIT [eimB XI5 &£ 5K
* TODO RootFS

sys_r‘iscv_hwpr‘obe X FrER

X o 2

BPI-F3 B A RS RGBRBITERD x
CanMV K230 XA RER x BXnAEGE SXrR%#E

VisionFive 2 x x

Megrez £ XA ARG LA ARG ROVRBIEIEBD

B 5il E A AYI0) e

* Full extension information != Better Codegen

* Example: (shown in the slides below)

18

16

1.4

1.2

R

0.

(o]

0.

o~

0.

o

https://rv64.zip

SPECCPU 2006 on Spacemit X60 with GCC15.0

<
% N O
r,‘\>v S O A
\x \’b:‘o 9’0 ¥

mgc mgc_zba_zbb mgcbv_zicond

N\

SPECCPU 2006 on Xuantie C920v2 with GCC15.0

25
2
15
2
D I
< O & \\\ N N < L
A _ er N \\.\ _+
o @ 9; & > c, & & & Q q, P N 4) S 3 &
ARSI '19' 0330 & o 'r>° & “‘Q' 0? o‘p SO fb'bé\ e"% & & & \»‘@ & e P ‘3 ° & @& & o“gy
. Q& N " g & o
y n We SN GO A NN N v N w0
o v B & W o' o
¥ W W N ¥

mgc mgc_zba_zbb wmgcbv_zicond

THANKS

	Slide 1: FEX-Emu 模块解析
	Slide 2: TL;DR
	Slide 3: Table Of Contents
	Slide 4: Basic Info
	Slide 5: Why use FEX
	Slide 6: 一个简单的 Benchmark
	Slide 7: Bench results:
	Slide 8: 前端: 字节读取
	Slide 9: 前端: OpCode 映射
	Slide 10: 前端: IR 构造
	Slide 11: 中端: Overview
	Slide 12: 中端: IR
	Slide 13
	Slide 14: 中端: IR
	Slide 15: 中端: IR (In-memory)
	Slide 16
	Slide 17: 中端: 基于 SSA 的 IR 优化
	Slide 18: 后端: CPU 能力探测
	Slide 19: 后端: JIT
	Slide 20: On Testing
	Slide 21: Issues:
	Slide 22: Which causes
	Slide 23: On RISC-V Porting
	Slide 24: sys_riscv_hwprobe 支持情况
	Slide 25: 目前已知的问题
	Slide 26
	Slide 27
	Slide 28: THANKS

