
FEX-Emu 模块解析
徐泽逸 xuzeyi@stu.ecnu.edu.cn

mailto:xuzeyi@stu.ecnu.edu.cn


TL;DR

• 两个部分
• FEX 源码的一些分享

• RISC-V 的目前方案与可能会遇见的问题



Table Of Contents

• Basic Info
• 前端: 
• 中端: IR 与 SSA 形式下的优化

• 后端: Syscall处理/代码生成

•测试

• RISC-V 移植



Basic Info
• FEX-Emu 是一个从 x86(_64) 到 ARM 的动态二进制翻译工具



Why use FEX

• 与传统编译器更接近的架构
• 前端 -> IR -> Codegen
• 比起其它 DBT 更清晰的设计

• 可接受的性能表现 (next slide)



一个简单的 Benchmark

• 测试对象: FEX-Emu/Native
• 测试硬件: ampere@solelab
• 测试集: openssl/7z



Bench results:

0

100000

200000

300000

400000

500000

600000

AArch64 Native FEX-Emu

7z -b

Compress Decompress Total

0

500000

1000000

1500000

2000000

2500000

3000000

openssl speed (16384 bytes)

Native FEX-EmuAround 75% of native



前端: 字节读取

• FEX 在 FEXCore::Frontend::Decoder 中读取并解析程序原始的 x86 字节流
(FEXCore/Source/Interface/Core/Frontend.cpp)

越界检查

PeekByte 内部检查内存是否可执行

存入指令缓存并返回



前端: OpCode 映射
FEX 定义了一个巨大的静态数组 OpDispatch_BaseOpTable 
(FEXCore/Source/Interface/Core/OpcodeDispatcher/BaseTables.h)

Decoder 读到字节后，会去查表拿到对应的函数指针



前端: IR 构造

• 相关文件: 
o /FEXCore/Source/Interface/IR/IREmitter.[h|cpp]

o /FEXCore/Source/Interface/Core/OpcodeDispatcher.cpp

•流程:
o加载源操作数

o加载目的操作数

o生成 IR
o计算标志位



中端: Overview

• IR Spec: IR.json
• IR Dumper: IRDumper.cpp
• IR Debug: IRDumperPass.cpp
• IR Emitter: IREmitter.cpp

o提供 IR 的构造函数

• IR to IR Optimizations:
o见 PassManager 与 Passes 文件夹下的文件



中端: IR
• FEX 的 IR 定义在 /FEXCore/Source/Interface/IR/IR.json中

• 在构建时 CMake 会使用该.json定义生成三个文件：
• IR.md: FEX-Emu 的 IR 文档

• IRDefines.inc: IR 使用的所有结构体定义
• IRDefines_Dispatch.inc: JIT 后端所使用的函数声明与 Alias



OpCode Class 操作

ALU 算术逻辑运算，加/减/乘/除/位运算等

Atomic 原子操作，处理多线程/并发环境中的同步机制

Backend 只有一个特殊的 OpCode: Last，用来获取列表中的最后一个元素

Branch SSA 基本块跳转，Syscall 转发/调用，Library forwarding，CPUID，断点...

Conv (整数/浮点/向量)类型转换

Crypto 加密和哈希函数 (AES/SHA-256/SHA-1)

F64 double 相关的运算 (FEX 中主要是三角/对数/指数函数)

F80 模拟 x87 FPU 的 long double

Memory 与内存的交互 (加载/存储/地址计算等)

Misc SSA 的元数据 (IRHeader/各种 Block)，舍入模式，随机数等

Moves Copy && Swap

StaticRA 绕过 SSA 虚拟寄存器，直接读写物理寄存器

Vector 纯向量操作类指令

VectorScalar 标量-向量混合浮点运算



中端: IR

• FEX-Emu 的 IR 使用了 SSA 形式，并有以下特殊约定:
• 第一个 SSA Node 被认为是 Invalid 的 (即 %0 永远为 null)
• 同时第二个 SSA Node 一定是 IRHeader Node (即 %1 永远为 IRHeader)

(%%1) IRHeader 0x41a9a0, %%2, 5

Entry point address The first CodeBlock IROp

(%%2) CodeBlock %%7, %%168, %%3

Starting op Ending op Pointer to next CodeBlock

(%%3) CodeBlock %%169, %%173, %%4

(%%169) BeginBlock %3

(%%170) i64 = Constant 0x41a9e1

(%%171) StoreContext %170 i64, 0x8, 0x0

(%%172) ExitFunction

(%%173) EndBlock %3



中端: IR (In-memory)

• 内存分配: 在 IntrusiveIRList.h提供函数，将一段连续内存一分为二
oData 区: 存 IROp (IROp_Header + IROp_*)
o List 区: 存 OrderedNode (实际的双向链表节点，见 IR.h)



Region2

Region1: 链表

(%%3) CodeBlock %%169, %%173, %%4



中端: 基于 SSA 的 IR 优化

FEX-Emu 的 PassManager 目前注册了这些 Pass:
• IR 验证: /FEXCore/Source/Interface/IR/Passes/IRValidation.cpp

• 寄存器分配: 基于线性扫描的简易 Allocator 
/FEXCore/Source/Interface/IR/Passes/RegisterAllocationPass.cpp

• Dead Flag/DCE 消除:
/FEXCore/Source/Interface/IR/Passes/RedundantFlagCalculationElimination.cpp

• X87 浮点运算的 StackOptimizationPass



后端: CPU 能力探测

• 相关文件: 
• 接口

o /FEXCore/include/FEXCore/Core/HostFeatures.h

• 具体实现
o /Source/Common/HostFeatures.h

o /Source/Common/HostFeatures.cpp

• 实现方式
o读系统寄存器 (见 GetSysReg 的实现)

o 内联汇编

o 从 Linux 提供的接口读取信息



后端: JIT

• FEXCore/Source/Interface/Core/JIT/JITClass.h 中定义了 FEXCore::CPU::CPUBackend,
FEXCore::CPU::Arm64JITCore 和 FEXCore::CPU::Arm64Emitter

• FEXCore/Source/Interface/Core/JIT/JIT.cpp 中利用先前自动生成的
IRDefines_Dispatch.inc 维护巨大的 Switch Case 语句

• 调用 Arm64Emitter 写二进制码



On Testing

FEX-Emu's CI uses these tests to avoid regression and prove 
correctness:
• A lot of handwritten assembly unit tests

• Unable to run under RISC-V, but may be portable

• 64-bit posixtest from http://posixtest.sourceforge.net/
• 64-bit gvisor tests from https://github.com/google/gvisor,
• gcc-target-tests-32 and gcc-target-tests-64

• Some tests are really old (e.g. 17 years ago)

#include "clang/Basic/SourceManager.h"

http://posixtest.sourceforge.net/
https://github.com/google/gvisor


Issues:

FOSDEM 2022: Emulator Devroom - FEX-Emu: Fast(-er) 
x86 emulation for AArch64



Which causes
• Some testcases are failing in unittests

• timer-sigev-thread crashes FEX with SIGSEGV
• synchronous-signal-block trigger various quirks in FEX's signal handling
• A lot of signal related tests can't run properly due to race/hang/timeout

目前的 workaround 是手动关掉这些测试点



On RISC-V Porting

• ONGOING CPU 能力探测
o syscall: sys_riscv_hwprobe

• DONE Syscall Handling
• TODO Library Thunking 
• ONGOING JIT 后端的代码生成

• TODO RootFS



sys_riscv_hwprobe 支持情况

Arch Linux Debian/Ubuntu Deepin openEuler Fedora

Lichee Pi 4A

BPI-F3 暂无可用镜像 系统镜像无法启动

CanMV K230 暂无可用镜像 暂无可用镜像 暂无可用镜像

VisionFive 2

Megrez 暂无可用镜像 暂无可用镜像 系统镜像无法启动



目前已知的问题

• Full extension information != Better Codegen
• Example: (shown in the slides below)







THANKS


	Slide 1: FEX-Emu 模块解析
	Slide 2: TL;DR
	Slide 3: Table Of Contents
	Slide 4: Basic Info
	Slide 5: Why use FEX
	Slide 6: 一个简单的 Benchmark
	Slide 7: Bench results:
	Slide 8: 前端: 字节读取
	Slide 9: 前端: OpCode 映射
	Slide 10: 前端: IR 构造
	Slide 11: 中端: Overview
	Slide 12: 中端: IR
	Slide 13
	Slide 14: 中端: IR
	Slide 15: 中端: IR (In-memory)
	Slide 16
	Slide 17: 中端: 基于 SSA 的 IR 优化
	Slide 18: 后端: CPU 能力探测
	Slide 19: 后端: JIT
	Slide 20: On Testing
	Slide 21: Issues:
	Slide 22: Which causes
	Slide 23: On RISC-V Porting
	Slide 24: sys_riscv_hwprobe 支持情况
	Slide 25: 目前已知的问题
	Slide 26
	Slide 27
	Slide 28: THANKS

